
VSASM v3 8‑Bit Virtual Processor February 2026

Contents

1 VSASM Architecture Reference 1
1.1 Overview . 1
1.2 System Specifications . 1
1.3 Registers . 1
1.4 Memory Map . 2
1.5 Instruction Set Table . 2
1.6 Flags . 4
1.7 Addressing Modes . 4
1.8 Visualizer Legend . 4

1 VSASM Architecture Reference

1.1 Overview

VSASM (Very Simple Assembly) is a simplified 8‑bit instruction set architecture designed for educa‑
tional purposes. It follows a Von Neumann architecture where both instructions and data share the
samememory space.

1.2 System Specifications

• Word Size: 8‑bit (1 Byte)
• Memory: 256 Bytes (Addresses 0x00 ‑ 0xFF)
• General Purpose Registers: 14 known as a through n.
• Special Registers:

– sp (Stack Pointer): Special register to use as the next free stack address;
– bp (Base Pointer): Special register to use as current stack frame anchor;
– pc (Program Counter): Holds the address of the next instruction;
– FLAGS: Status register (Zero, Negative).

1.3 Registers

Register Index Description

a ‑ n 0‑13 General Purpose Registers (GPR). Used
for arithmetic and data manipulation.

sp 14 Stack Pointer. Points to the top of the
stack.

Veitangie 1

VSASM v3 8‑Bit Virtual Processor February 2026

Register Index Description

bp 15 Base Pointer. Used to reference function
arguments and local variables.

1.4 Memory Map

• 0x00 ‑…: Program code starts at address 0.
• … ‑ 0xFF: Stack starts at the end of memory and grows towards 0.
• Heap: There is nodedicatedheap region; theprogrammermustmanage freememorybetween
the code and stack.

1.5 Instruction Set Table

Arguments: r = register (e.g. a), val = immediate value (e.g. 10), addr = memory address.

Opcode Mnemonic Arguments Operation Description

0 HALT ‑ Stop Stops the execution
of the processor.

1 JMP %reg pc <- reg Unconditional jump
to address in register.

2 JMPIFNEG %reg if (neg)pc
<- reg

Jump to address in
register if Negative
flag is set.

3 JMPIFZERO %reg if (zero)pc
<- reg

Jump to address in
register if Zero flag is
set.

4 READ %reg reg <- Input Read integer from
Input Device into
register. Updates
Flags.

5 SHOW %reg Output <-
reg

Write integer from
register to Output
Device.

6 ADD %r1 %r2 r1 <- r1 +
r2

Add value of r2 to r1.
Updates Flags.

Veitangie 2

VSASM v3 8‑Bit Virtual Processor February 2026

Opcode Mnemonic Arguments Operation Description

7 SUB %r1 %r2 r1 <- r1 -
r2

Subtract value of r2
from r1. Updates
Flags.

8 NOT %reg reg <- ~reg Bitwise NOT. Updates
Flags.

9 AND %r1 %r2 r1 <- r1 &
r2

Bitwise AND. Updates
Flags.

10 OR %r1 %r2 r1 <- r1 |
r2

Bitwise OR. Updates
Flags.

11 XOR %r1 %r2 r1 <- r1 ^
r2

Bitwise XOR. Updates
Flags.

12 MOV %r1 %r2 r1 <- r2 Copy value from r2 to
r1. Updates Flags.

13 CMP %r1 %r2 r1 - r2 Compare r1 and r2.
Discards result,
updates Flags only.

14 PUT %reg val reg <- val Load immediate 8‑bit
value into register.
Updates Flags.

15 LOAD %reg addr reg <- Mem[
addr]

Load value from
direct memory
address. Updates
Flags.

16 STORE %reg addr Mem[addr] <-
reg

Store value from
register to direct
memory address.

17 LOADREG %r1 %r2 r1 <- Mem[r2
]

Load val from
address stored in r2
into r1. Updates
Flags.

18 STOREREG %r1 %r2 Mem[r2] <-
r1

Store val from r1 into
address stored in r2.

19 OFFSET %reg val reg <- bp -
val

Calculate address
relative to BP. Useful
for local vars/args.
Updates Flags.

Veitangie 3

VSASM v3 8‑Bit Virtual Processor February 2026

Opcode Mnemonic Arguments Operation Description

20 LSHIFT %reg val reg <- reg
<< val

Logical Left Shift.
Updates Flags.

21 RSHIFT %reg val reg <- reg
>> val

Logical Right Shift.
Updates Flags.

1.6 Flags

• Z (Zero): Set if the last value written to register or computed by the ALU is 0.
• N (Negative): Set if the high‑bit (bit 7) of the last value written to register or computed by the
ALU is 1.

1.7 Addressing Modes

• Immediate: PUT a 10
• Register: ADD a b
• Direct: LOAD a 50
• Indirect (Register): LOADREG a b

1.8 Visualizer Legend

• Green Text: Register/Memory Write
• Blue Text: Register/Memory Read
• Yellow Background: Stack Frame (Active function locals)
• Cyan Border: Stack Pointer (Top of stack)
• Pink Background: Stack contents
• Blue Background: Program Code (Static)

Veitangie 4

	VSASM Architecture Reference
	Overview
	System Specifications
	Registers
	Memory Map
	Instruction Set Table
	Flags
	Addressing Modes
	Visualizer Legend

