VSASM v3 8-Bit Virtual Processor February 2026

Contents

1 VSASM Architecture Reference 1
L1 OVEIVIEW . . it e e e e e e e e e e e e e e e e e 1
1.2 System Specifications e 1
1.3 Registers L e 1
1.4 MemoryMap e e e e e e e e 2
1.5 |InstructionSetTable e e 2
1.6 Flags. . . o o o i i e 4
1.7 AddressingModes e e 4
1.8 VisualizerLegend L e e 4

1 VSASM Architecture Reference

1.1 Overview

VSASM (Very Simple Assembly) is a simplified 8-bit instruction set architecture designed for educa-
tional purposes. It follows a Von Neumann architecture where both instructions and data share the
same memory space.

1.2 System Specifications

« Word Size: 8-bit (1 Byte)

« Memory: 256 Bytes (Addresses 0x00 - 0xFF)

+ General Purpose Registers: 14 known as a through n.
+ Special Registers:

sp (Stack Pointer): Special register to use as the next free stack address;

bp (Base Pointer): Special register to use as current stack frame anchor;

pc (Program Counter): Holds the address of the next instruction;

FLAGS: Status register (Zero, Negative).

1.3 Registers

Register Index Description

a-n 0-13 General Purpose Registers (GPR). Used
for arithmetic and data manipulation.

sp 14 Stack Pointer. Points to the top of the
stack.

Veitangie 1

VSASM v3 8-Bit Virtual Processor February 2026

Register Index Description

bp 15 Base Pointer. Used to reference function

arguments and local variables.

1.4 Memory Map

+ 0x00 - ...: Program code starts at address 0.

* ... - OXFF: Stack starts at the end of memory and grows towards 0.

+ Heap: Thereis no dedicated heap region; the programmer must manage free memory between
the code and stack.

1.5 Instruction Set Table

Arguments: r = register (e.g. a), va'l =immediate value (e.g. 10), addr = memory address.

Opcode Mnemonic Arguments Operation Description

0 HALT - Stop Stops the execution
of the processor.

1 JMP %reg pc <- reg Unconditional jump
to address in register.

2 JMPIFNEG %reg if (neg)pc Jump to address in

<- reg register if Negative
flagis set.

3 IJMPIFZERO %reg if (zero)pc Jump to address in

<- reg register if Zero flag is
set.

4 READ %reg reg <- Input Readintegerfrom
Input Device into
register. Updates
Flags.

5 SHOW %reg Output <- Write integer from

reg register to Output
Device.
6 ADD %rl %r2 ri <- ril + Add value of r2 to r1.

r2

Updates Flags.

Veitangie

VSASM v3 8-Bit Virtual Processor

February 2026

Opcode

7

10

11

12

13

14

15

16

17

18

19

Mnemonic

SUB

NOT

AND

OR

XOR

MOV

CMP

PUT

LOAD

STORE

LOADREG

STOREREG

OFFSET

Arguments

%rl %r2

%reg

%rl %r2

%rl %r2

%rl %r2

%rl %r2

%rl %r2

%reg val

%reg addr

%reg addr

%rl %r2

%rl %r2

%reg val

Operation
rl <- rl -
r2

reg <- ~reg

rli <- rl &
r2
ri <- rl |
r2

ri <- rl1 A
r2

rl <- r2

rl - r2

reg <- val

reg <- Mem[
addr]

Mem[addr] <-

reg

ri <- Mem[r2

]

Mem[r2] <-
ril

reg <- bp -
val

Description

Subtract value of r2
from rl. Updates
Flags.

Bitwise NOT. Updates
Flags.

Bitwise AND. Updates
Flags.

Bitwise OR. Updates
Flags.

Bitwise XOR. Updates
Flags.

Copy value from r2 to
rl. Updates Flags.

Comparerl and r2.
Discards result,
updates Flags only.

Load immediate 8-bit
value into register.
Updates Flags.

Load value from
direct memory
address. Updates
Flags.

Store value from
register to direct
memory address.

Load val from
address stored in r2
into r1. Updates
Flags.

Store val from rl into
address stored in r2.

Calculate address
relative to BP. Useful
for local vars/args.
Updates Flags.

Veitangie

VSASM v3 8-Bit Virtual Processor February 2026
Opcode Mnemonic Arguments Operation Description
20 LSHIFT %reg val reg <- reg Logical Left Shift.
<< val Updates Flags.
21 RSHIFT %reg val reg <- reg Logical Right Shift.
>> val Updates Flags.
1.6 Flags

+ Z(Zero): Set if the last value written to register or computed by the ALU is 0.
+ N (Negative): Set if the high-bit (bit 7) of the last value written to register or computed by the

ALU s 1.

1.7 Addressing Modes

« Immediate: PUT a 10
Register: ADD a b
« Direct: LOAD a 50

« Indirect (Register): LOADREG a b

1.8 Visualizer Legend

Green Text: Register/Memory Write
Blue Text: Register/Memory Read
Yellow Background: Stack Frame (Active function locals)
Cyan Border: Stack Pointer (Top of stack)
Pink Background: Stack contents

Blue Background: Program Code (Static)

Veitangie

	VSASM Architecture Reference
	Overview
	System Specifications
	Registers
	Memory Map
	Instruction Set Table
	Flags
	Addressing Modes
	Visualizer Legend

